domingo, 31 de mayo de 2015

Seguridad cuántica para las tarjetas de crédito

Entre las muchas características extraordinarias que distinguen la mecánica cuántica de la mecánica clásica está el llamado teorema de imposibilidad de clonación cuántica. Resumidamente, viene a decir que es imposible duplicar perfectamente un estado cuántico desconocido.

La criptografía cuántica trata de explotar esta propiedad para así poder mantener las comunicaciones seguras y a salvo de posibles oídos ajenos. Pues bien, ahora Pepijn Pinkse y sus colaboradores de la Universidad de Twente y de la Universidad Técnica de Eindhoven han demostrado cómo proporcionar una identificación física a prueba de fraudes utilizando autentificación de seguridad cuántica (QSA por sus siglas en inglés).

Las claves en su experimento consistían en finas capas de pintura blanca que recubrían las "tarjetas" que se deseaba autentificar. Cuando un pulso de luz (con sólo unos pocos fotones) se enfoca sobre una clave, el patrón de la luz reflejada depende de la forma espacial del pulso de fotones, que se puede programar, y de las posiciones al azar e irreproducibles de más de un millón de nanopartículas de óxido de zinc que se encuentran en la pintura.

Después de medir y anotar esa dependencia en un "registro" inicial de la clave, los investigadores podían examinar la misma con un pulso de forma arbitraria y comparar así la respuesta esperada con lo que realmente se observaba. La clave correcta se distinguía claramente de una clave incorrecta, e incluso de un intento optimizado de falsificación basado en información robada del registro.

Y otras características que añaden atractivo a la técnica QSA es que no depende de datos secretos guardados en algún sitio y que se puede implementar con la tecnología actual. Como vemos, la seguridad cuántica está cada vez más cerca.

Bank cards
Foto original de MediaPhoto.Org (mediaphoto.org Own work) [CC BY 3.0], via Wikimedia Commons.

_____
Fuente:
http://scitation.aip.org/content/aip/magazine/physicstoday/article/68/2/10.1063/PT.3.2676

sábado, 16 de mayo de 2015

El cometa de Rosetta tiene mucho deuterio

Los planetólogos han sospechado desde hace tiempo que los cometas y los asteroides trajeron agua y compuestos orgánicos a la Tierra durante una época conocida como el Bombardeo Intenso Tardío, cientos de millones de años después de que se formara el planeta. Pero la contribución de los cometas y su procedencia todavía son temas discutidos.

Para distinguir entre las diferentes posibilidades, un buen método es comparar la proporción entre el deuterio y el hidrógeno (D/H) del agua del mar con la que se encuentra en distintos conjuntos de cometas. En los aproximadamente doce cometas investigados hasta el momento, se piensa que las ratios D/H observadas representan los valores locales donde y cuando los componentes del cometa se condensaron.

Comet 67P on 19 September 2014 NavCam mosaic
Cometa 67P/Churiumov-Guerasimenko.
[Imagen original de ESA/Rosetta/NAVCAM,
CC BY-SA IGO 3.0 [CC BY-SA 3.0-igo], undefined]
La última medida isotópica procede de la sonda espacial Rosetta (de la Agencia Espacial Europea), que está ahora orbitando alrededor del cometa 67P/Churiumov-Guerasimenko, de 4 km de anchura. Utilizando el espectrómetro de masas de la Rosetta, Kathrin Altwegg (Universidad de Berna, Suiza) y sus compañeros han medido la relación D/H de la delgada atmósfera del cometa, siendo su valor tres veces el de la Tierra.

Este valor tan alto es un duro golpe contra la teoría de que los cometas del cinturón de Kuiper trajeron el agua a la Tierra, teoría que había sido reforzada hace tres años cuando el telescopio espacial Herschel descubrió un cometa (103P/Hartley 2) cuya relación D/H coincidía con la de la Tierra. A semejanza del Hartley 2, se piensa que el cometa Churiumov-Guerasimenko se originó en el cinturón de Kuiper, más allá de la órbita de Neptuno.

Altwegg y sus colaboradores especulan que la inconsistencia de estos valores podría reflejar orígenes distintos, a pesar de que ahora sean parte de la misma familia. La nueva medida apunta a los asteroides condríticos, cuyas ratios D/H son sistemáticamente más parecidas a las de la Tierra, como la fuente más probable de nuestros océanos. Seguiremos investigando...
_____
Fuente:
http://scitation.aip.org/content/aip/magazine/physicstoday/article/68/2/10.1063/PT.3.2675

viernes, 1 de mayo de 2015

La explosión de una estrella supermasiva

En el centro de casi todas las galaxias se encuentran agujeros negros supermasivos, con masas millones o miles de millones de veces la del Sol. Y esos agujeros negros alimentan quásares lejanos y brillantes que ya existían cuando el universo sólo tenía mil millones de años. Sin embargo, comprender cómo se pudieron formar tales agujeros negros supermasivos tan pronto en la historia del universo es un reto.

Algunos modelos teóricos sugieren que se pudieron originar como estrellas supermasivas (de unas 10 000 masas solares o más) que colapsan en agujeros negros y después aumentan mediante acrecimiento y fusiones de galaxias hasta alcanzar los tamaños observados ahora.

A través de nuevas simulaciones con superordenadores, Ke-Jung Chen (de la Universidad de California en Santa Cruz) y sus compañeros han revelado que algunas estrellas primordiales de unas 55 000 masas solares podrían acabar no como agujeros negros (como predicen los modelos), sino que morirían como supernovas sumamente energéticas. Debido a que estas estrellas masivas queman helio en su núcleo, los efectos de la relatividad general pueden hacer que sean dinámicamente inestables, dando lugar a un rápido colapso del núcleo de la estrella y alimentando un fuego termonuclear explosivo. Entonces, la estrella explota de forma tan violenta y completa que no quedan restos masivos.

En la imagen se puede ver una simulación en dos dimensiones del interior de una estrella supermasiva de 55 500 masas solares un día después del comienzo de la explosión. La circunferencia exterior es ligeramente mayor que la órbita de la Tierra. En el núcleo interior de helio se producen reacciones nucleares que convierten el helio en oxígeno y dan lugar a violentas inestabilidades del fluido que aceleran la reacción. En unas pocas horas, la explosión habrá liberado suficiente energía como para dispersar por completo la estrella. Se espera que este resultado siga valiendo para tres dimensiones.

Explosion of supermasive star
Imagen de Ken Chen, Universidad de California en Santa Cruz (UCSC).

_____
Fuente:
http://scitation.aip.org/content/aip/magazine/physicstoday/article/68/1/10.1063/PT.3.2666
Related Posts Plugin for WordPress, Blogger...